54 research outputs found

    Integrating remote sensing, GIS and dynamic models for landscape-level simulation of forest insect disturbance

    Get PDF
    Cellular automata (CA) is a powerful tool for modeling the evolution of macroscopic scale phenomena as it couples time, space, and variables together while remaining in a simplified form. However, such application has remained challenging in forest insect epidemics due to the highly dynamic nature of insect behavior. Recent advances in temporal trajectory-based image analysis offer an alternative way to obtain high-frequency model calibration data. In this study, we propose an insect-CA modeling framework that integrates cellular automata, remote sensing, and Geographic Information System to understand the insect ecological processes, and tested it with measured data of mountain pine beetle (MPB) in the Rocky Mountains. The overall accuracy of the predicted MPB mortality pattern in the test years ranged from 88% to 94%, which illuminates its effectiveness in modeling forest insect dynamics. We further conducted sensitivity analysis to examine responses of model performance to various parameter settings. In our case, the ensemble random forest algorithm outperforms the traditional linear regression in constructing the suitability surface. Small neighborhood size is more effective in simulating the MPB movement behavior, indicating that short-distance is the dominating dispersal mode of MPB. The introduction of a stochastic perturbation component did not improve the model performance after testing a broad range of randomness degree, reflecting a relative compact dispersal pattern rather than isolated outbreaks. We conclude that CA with remote sensing observation is useful for landscape insect movement analyses;however, consideration of several key parameters is critical in the modeling process and should be more thoroughly investigated in future work

    A dataset of 30-meter annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States

    Get PDF
    Fine-resolution satellite observations show great potential for characterizing seasonal and annual dynamics of vegetation phenology in urban domains, from local to regional and global scales. However, most previous studies were conducted using coarse or moderate resolution data, which are inadequate for characterizing the spatiotemporal dynamics of vegetation phenology in urban domains. In this study, we produced an annual vegetation phenology dataset in urban ecosystems for the conterminous United States (US), using all available Landsat images on the Google Earth Engine (GEE) platform. First, we characterized the long-term mean seasonal pattern of phenology indicators of the start of season (SOS) and the end of season (EOS), using a double logistic model. Then, we identified the annual variability of these two phenology indicators by measuring the difference of dates when the vegetation index in a specific year reaches the same magnitude as its long-term mean. The derived phenology indicators agree well with in-situ observations from PhenoCam network and Harvard Forest. Comparing with results derived from the moderate resolution imaging spectroradiometer (MODIS) data, our Landsat derived phenology indicators can provide more spatial details. Also, temporal trends of phenology indicators (e.g., SOS) derived from Landsat and MODIS are consistent overall, but the Landsat derived results from 1985 have a longer temporal span compared to MODIS from 2001. In general, there is a spatially explicit pattern of phenology indicators from the North to the South in cities in the conterminous US, with an overall advanced SOS in the past three decades. The derived phenology product in the US urban domains at the national level is of great use for urban ecology studies for its fine spatial resolution (30 m) and long temporal span (30 years). The data are available at https://doi.org/10.6084/m9.figshare.7685645.v2

    Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine

    Get PDF
    The Prairie Pothole Region of North America is characterized by millions of depressional wetlands, which provide critical habitats for globally significant populations of migratory waterfowl and other wildlife species. Due to their relatively small size and shallow depth, these wetlands are highly sensitive to climate variability and anthropogenic changes, exhibiting inter- and intra-annual inundation dynamics. Moderate-resolution satellite imagery (e.g., Landsat, Sentinel) alone cannot be used to effectively delineate these small depressional wetlands. By integrating fine spatial resolution Light Detection and Ranging (LiDAR) data and multi-temporal (2009–2017) aerial images, we developed a fully automated approach to delineate wetland inundation extent at watershed scales using Google Earth Engine. Machine learning algorithms were used to classify aerial imagery with additional spectral indices to extract potential wetland inundation areas, which were further refined using LiDAR-derived landform depressions. The wetland delineation results were then compared to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and existing global-scale surface water products to evaluate the performance of the proposed method. We tested the workflow on 26 watersheds with a total area of 16,576 km2 in the Prairie Pothole Region. The results showed that the proposed method can not only delineate current wetland inundation status but also demonstrate wetland hydrological dynamics, such as wetland coalescence through fill-spill hydrological processes. Our automated algorithm provides a practical, reproducible, and scalable framework, which can be easily adapted to delineate wetland inundation dynamics at broad geographic scales

    Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish

    Get PDF
    Aim As climate change presents a major threat to biodiversity in the next decades, it is critical to assess its impact on species habitat suitability to inform biodiversity conservation. Species distribution models (SDMs) are a widely used tool to assess climate change impacts on species' geographical distributions. As the name of these models suggests, the species level is the most commonly used taxonomic unit in SDMs. However, recently it has been demonstrated that SDMs considering taxonomic resolution below (or above) the species level can make more reliable predictions of biodiversity change when different populations exhibit local adaptation. Here, we tested this idea using the Japanese crayfish (Cambaroides japonicus), a threatened species encompassing two geographically structured and phylogenetically distinct genetic lineages. Location Northern Japan. Methods We first estimated niche differentiation between the two lineages of C. japonicus using n-dimensional hypervolumes and then made climate change predictions of habitat suitability using SDMs constructed at two phylogenetic levels: species and intraspecific lineage. Results Our results showed only intermediate niche overlap, demonstrating measurable niche differences between the two lineages. The species-level SDM made future predictions that predicted much broader and severe impacts of climate change. However, the lineage-level SDMs led to reduced climate change impacts overall and also suggested that the eastern lineage may be more resilient to climate change than the western one. Main conclusions The two lineages of C. japonicus occupy different niche spaces. Compared with lineage-level models, species-level models can overestimate climate change impacts. These results not only have important implications for designing future conservation strategies for this threatened species, but also highlight the need for incorporating genetic information into SDMs to obtain realistic predictions of biodiversity change.Peer reviewe

    A global product of fine-scale urban building height based on spaceborne lidar

    Full text link
    Characterizing urban environments with broad coverages and high precision is more important than ever for achieving the UN's Sustainable Development Goals (SDGs) as half of the world's populations are living in cities. Urban building height as a fundamental 3D urban structural feature has far-reaching applications. However, so far, producing readily available datasets of recent urban building heights with fine spatial resolutions and global coverages remains a challenging task. Here, we provide an up-to-date global product of urban building heights based on a fine grid size of 150 m around 2020 by combining the spaceborne lidar instrument of GEDI and multi-sourced data including remotely sensed images (i.e., Landsat-8, Sentinel-2, and Sentinel-1) and topographic data. Our results revealed that the estimated method of building height samples based on the GEDI data was effective with 0.78 of Pearson's r and 3.67 m of RMSE in comparison to the reference data. The mapping product also demonstrated good performance as indicated by its strong correlation with the reference data (i.e., Pearson's r = 0.71, RMSE = 4.60 m). Compared with the currently existing products, our global urban building height map holds the ability to provide a higher spatial resolution (i.e., 150 m) with a great level of inherent details about the spatial heterogeneity and flexibility of updating using the GEDI samples as inputs. This work will boost future urban studies across many fields including climate, environmental, ecological, and social sciences

    Location, biophysical and agronomic parameters for croplands in northern Ghana

    Get PDF
    Smallholder agriculture is the bedrock of the food production system in sub-Saharan Africa. Yields in Africa are significantly below potentially attainable yields for a number of reasons, and they are particularly vulnerable to climate change impacts. Monitoring of these highly heterogeneous landscapes is needed to respond to farmer needs, develop an appropriate policy and ensure food security, and Earth observation (EO) must be part of these efforts, but there is a lack of ground data for developing and testing EO methods in western Africa, and in this paper, we present data on (i) crop locations, (ii) biophysical parameters and (iii) crop yield, and biomass was collected in 2020 and 2021 in Ghana and is reported in this paper. In 2020, crop type was surveyed in more than 1800 fields in three different agroecological zones across Ghana (the Guinea Savannah, Transition and Deciduous zones). In 2021, a smaller number of fields were surveyed in the Guinea Savannah zone, and additionally, repeated measurements of leaf area index (LAI) and leaf chlorophyll concentration were made on a set of 56 maize fields. Yield and biomass were also sampled at harvesting. LAI in the sampled fields ranged from 0.1 to 5.24 m2 m−2, whereas leaf chlorophyll concentration varied between 6.1 and 60.3 µg cm−2. Yield varied between 190 and 4580 kg ha−1, with an important within-field variability (average per-field standard deviation 381 kg ha−1). The data are used in this paper to (i) evaluate the Digital Earth Africa 2019 cropland masks, where 61 % of sampled 2020/21 cropland is flagged as cropland by the data set, (ii) develop and test an LAI retrieval method from Earth observation Planet surface reflectance data (validation correlation coefficient R=0.49, root mean square error (RMSE) 0.44 m2 m−2), (iii) create a maize classification data set for Ghana for 2021 (overall accuracy within the region tested: 0.84), and (iv) explore the relationship between maximum LAI and crop yield using a linear model (correlation coefficient R=0.66 and R=0.53 for in situ and Planet-derived LAI, respectively). The data set, made available here within the context of the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) initiative, is an important contribution to understanding crop evolution and distribution in smallholder farming systems and will be useful for researchers developing/validating methods to monitor these systems using Earth observation data. The data described in this paper are available from https://doi.org/10.5281/zenodo.6632083 (Gomez-Dans et al., 2022)

    A Stepwise Calibration of Global DMSP/OLS Stable Nighttime Light Data (1992–2013)

    No full text
    The Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) stable nighttime light (NTL) data provide a wide range of potentials for studying global and regional dynamics, such as urban sprawl and electricity consumption. However, due to the lack of on-board calibration, it requires inter-annual calibration for these practical applications. In this study, we proposed a stepwise calibration approach to generate a temporally consistent NTL time series from 1992 to 2013. First, the temporal inconsistencies in the original NTL time series were identified. Then, a stepwise calibration scheme was developed to systematically improve the over- and under- estimation of NTL images derived from particular satellites and years, by making full use of the temporally neighbored image as a reference for calibration. After the stepwise calibration, the raw NTL series were improved with a temporally more consistent trend. Meanwhile, the magnitude of the global sum of NTL is maximally maintained in our results, as compared to the raw data, which outperforms previous conventional calibration approaches. The normalized difference index indicates that our approach can achieve a good agreement between two satellites in the same year. In addition, the analysis between the calibrated NTL time series and other socioeconomic indicators (e.g., gross domestic product and electricity consumption) confirms the good performance of the proposed stepwise calibration. The calibrated NTL time series can serve as useful inputs for NTL related dynamic studies, such as global urban extent change and energy consumption

    Extraction of Old Towns in Hangzhou (2000–2018) from Landsat Time Series Image Stacks

    No full text
    With rapid urbanization in recent decades, more and more urban renewal has taken place in China. Meanwhile, the early developed areas without change have become old towns, which need special attention in future city planning. However, other than field surveys, there is no specific method to identify old towns. To fill this gap, we used time-series image stacks established from Landsat Surface Reflectance Tier 1 data on the Google Earth Engine (GEE) platform, facilitated by Global Urban Boundary (GUB), Essential Urban Land Use Categories (EULUC) and Global Artificial Impervious Area (GAIA) data. The LandTrendr change detection algorithm was applied to extract detailed information from 14 band/index trajectories. These features were then used as inputs to two methods of old town identification: statistical thresholding and random forest classification. We assessed these two methods in a rapidly developing large city, Hangzhou, and subsequently obtained overall accuracies of 81.33% and 90.67%, respectively. Red band, NIR band and related indices show higher importance in random forest classification, and the magnitude feature plays an outstanding role. The final map of Hangzhou during the 2000–2018 period shows that the old towns were concentrated in the downtown region near West Lake within the urban boundaries in 2000, and far fewer than the renewed areas. The results could serve as references in the provincial and national planning of future urban developments

    Mapping hourly population dynamics using remotely sensed and geospatial data: a case study in Beijing, China

    No full text
    High spatiotemporal population data are critical for a wide range of applications (e.g. urban planning and management, risk assessment, and epidemic control). However, such data are still not widely available due to the limited knowledge of complex human activities. Here we proposed a spatiotemporal downscaling framework for estimating hourly population dynamics in Beijing by integrating remote sensing and social sensing data. First, we generated two baseline maps of population during sleep and work times using a dasymetric method. Second, we generated urban functional zones using a random forest model and derived human activity patterns from social sensing data. Finally, we estimated the hourly population dynamics at a 500-meter resolution using a temporal downscaling method. Results show the significant spatial difference of the population over time, especially between working hours (9:00 − 18:00) and sleeping hours (after 0:00). The spatial pattern of population is more homogenous within the sixth ring area in Beijing during work time compared to sleep time when there are more clusters of high population. The comparison of spatiotemporal patterns with the referenced real-time heat maps from Baidu indicates that our population data are reliable. The framework presented in this paper is transferable in other regions. The resulting dataset of hourly population dynamics is of great help for governments of emergency responses as well as for studies about human risks to environmental issues
    • …
    corecore